ML34063 DC-to-DC Converter Control Circuit

* Application

- Battery Powered Equipment
- Palmtops
- Video Recorders

* Features

- Operating Voltage firm 3 V to 35 V
- Low Standby Current
- Output Switch Currentupto 1.5 A
- Output Voltage Adjustable
- Operating Frequency at 100 KHz
- 2% Accuracy Voltage Reference
- Package Available: PDIP-8 (1.25W) \& SO-8 (625mW)

* Block Diagram

* Pin Configuration

* Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage		Vin	35	V
Comparator Input Voltage Range		VIR	-0.3 to 35	V
Switch Collector Voltage		$\mathrm{VC}_{\text {(Switch }}$	35	V
Switch Emitter Voltage ($\mathrm{V}_{\text {Pin } 1}=35 \mathrm{~V}$)		VE(Switch)	35	V
Switch Collector to Emitter Voltage		VCE(Switch)	35	V
Drive Collector Voltage		$\mathrm{V}_{\text {c(}{ }^{\text {drive }} \text {) }}$	35	V
Switch Collector Current		IC(Switch)	100	mA
Switch Current		Isw	1.5	A
Power Dissipation at$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PDIP-8	Pd	1250	mW
	SO-8		625	
Thermal Resistance	PDIP-8	$\mathrm{R}_{\text {өJA }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	SO-8		160	
Operating Ambient Temperature		Topr	$-0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($V_{C C}=5 V, T_{A}=25^{\circ} C, C_{T}=1 n F$, unless otherwise specified.)

Oscillator

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Frequency	$f_{\text {OSC }}$	$V_{\text {Pin } 5}=0 \mathrm{~V}$	24	33	42	kHz
Charge Current	Ichg	$V_{C C}=5.0 \mathrm{~V}$ to 35 V	24	35	42	$u \mathrm{~A}$
Discharge Current	Idichg	$V_{C C}=5.0 \mathrm{~V}$ to 35 V	140	220	260	$u \mathrm{~A}$
Discharge to Charge Current Ratio	Idischg/Ichg	Pin 7 to $V_{C C}$	5.2	6.5	7.5	
Current Limit Sense Voltage	Vipk(sense)	Ichg $=$ Idischg	250	300	350	mV

Output Switch (Note1)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Saturation Voltage, Darlington Connection	$V_{C E(s a t)}$	$I_{\text {SW }}=1.0 \mathrm{~A}$, Pins 1,8 connected		1.0	1.3	V
Saturation Voltage (Note 6)	$V_{C E(\text { sat })}$	$I_{S W}=1.0 A, R_{\text {Pin } 8}=82$ ohm to $V_{C C}$, Forced $\beta=20$		0.45	0.7	V
DC Current Gain	$h_{\text {FE }}$	$I_{S W}=1.0 A, V_{C E}=5.0 \mathrm{~V}$	50	75		
Collector Off-State Current	$I_{C(o f f)}$	$V_{C E}=35 \mathrm{~V}$		0.01	100	$u \mathrm{~A}$

Comparator

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Threshold Voltage	$V_{\text {th }}$		1.225	1.25	1.275	V

Total Device

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Supply Current	$I_{c c}$	$V_{C C}=5.0 V$ to 35V, Pin $7=V_{c C,}, V_{\text {pin }}>V_{\text {tho }}$, Pin2 $=$ GND, remaining pins open			4.0	mA

Note : 1. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperatures possible.

* Step-Up Converter Application Circuit

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	$30 \mathrm{mV} \pm 0.05 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV} \pm 0.017 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	400 mVpp
Efficient	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	87.7%
Output Ripple with Optional Filter	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	40 mVpp

* Step-Down Converter Application Circuit

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	$12 \mathrm{mV} \pm 0.12 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ to 500 mA	$3.0 \mathrm{mV} \pm 0.03 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	120 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1$ ohm	1.1 A
Efficient	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	83.7%
Output Ripple with Optional Filter	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	40 mVpp

* Voltage Inverting Converter Application Circuit

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$3.0 \mathrm{mV} \pm 0.012 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V} \pm 0.09 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	500 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \mathrm{ohm}$	910 mA
Efficient	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	62.2%
Output Ripple with Optional Filter	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	70 mVpp

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use.

